您确定要删除吗?

取消
首页 算法大全 应用模型 分析软件 算法学院数据中心 关于本站
在线咨询
400-820-6981
意见反馈
返回顶部

数据分析常用的12种方法

发布时间:2017-04-24   浏览量:3912 3

经常有人问我,数据分析常用的分析方法有哪些,我应该选择哪个学习,哪个分析方法比较好等类似问题,对于碰见类似问题,我会经常告诉他数据分析方法主要是用来指导数据分析师进行一次完整的数据分析,他更多的是指数据分析思路,比如主要从哪几方面开展数据分析,各方面包含什么内容和指标?所以只要哪个数据分析方法能解决我们实际中遇到的问题,那它就是适合的,因此今天我整理了12中比较常见的数据分析方法。

一、描述统计

描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。

1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。

2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。

二、假设检验

1、参数检验

参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验 。

1)U验   使用条件:当样本含量n较大时,样本值符合正态分布

2)T检验 使用条件:当样本含量n较小时,样本值符合正态分布

A  单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;

B  配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;

C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。

2、非参数检验

非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。

适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A 虽然是连续数据,但总体分布形态未知或者非正态;

B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;

主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。

三、信度分析

检査测量的可信度,例如调查问卷的真实性。

分类:

1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度

2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。

四、列联表分析

用于分析离散变量或定型变量之间是否存在相关。

对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。

列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。

五、相关分析

研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。

1、单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;

2、复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;

3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。

六、方差分析

使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。

分类

1、单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系

2、多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系

3、多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系

4、协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法,

七、回归分析

分类:

1、一元线性回归分析:只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。

2、多元线性回归分析

使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。

1)变呈筛选方式:选择最优回归方程的变里筛选法包括全横型法(CP法)、逐步回归法,向前引入法和向后剔除法

2)横型诊断方法:

A 残差检验: 观测值与估计值的差值要艰从正态分布

B 强影响点判断:寻找方式一般分为标准误差法、Mahalanobis距离法

C 共线性诊断:

诊断方式:容忍度、方差扩大因子法(又称膨胀系数VIF)、特征根判定法、条件指针CI、方差比例

处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等

3、Logistic回归分析

线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况

分类:

Logistic回归模型有条件与非条件之分,条件Logistic回归模型和非条件Logistic回归模型的区别在于参数的估计是否用到了条件概率。

4、其他回归方法 非线性回归、有序回归、Probit回归、加权回归等

八、聚类分析

样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。

1、性质分类:

Q型聚类分析:对样本进行分类处理,又称样本聚类分祈 使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等

R型聚类分析:对指标进行分类处理,又称指标聚类分析 使用相似系数作为统计量衡量相似度,相关系数、列联系数等

2、方法分类:

1)系统聚类法: 适用于小样本的样本聚类或指标聚类,一般用系统聚类法来聚类指标,又称分层聚类

2)逐步聚类法 :适用于大样本的样本聚类

3)其他聚类法 :两步聚类、K均值聚类等

九、判别分析

1、判别分析:根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体

2、与聚类分析区别

1)聚类分析可以对样本逬行分类,也可以对指标进行分类;而判别分析只能对样本

2)聚类分析事先不知道事物的类别,也不知道分几类;而判别分析必须事先知道事物的类别,也知道分几类

3)聚类分析不需要分类的历史资料,而直接对样本进行分类;而判别分析需要分类历史资料去建立判别函数,然后才能对样本进行分类

3、进行分类 :

1)Fisher判别分析法 :

以距离为判别准则来分类,即样本与哪个类的距离最短就分到哪一类, 适用于两类判别;

以概率为判别准则来分类,即样本属于哪一类的概率最大就分到哪一类,适用于

适用于多类判别。

2)BAYES判别分析法 :

BAYES判别分析法比FISHER判别分析法更加完善和先进,它不仅能解决多类判别分析,而且分析时考虑了数据的分布状态,所以一般较多使用;

十、主成分分析

将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息 。

十一、因子分析

一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法

与主成分分析比较:

相同:都能够起到済理多个原始变量内在结构关系的作用

不同:主成分分析重在综合原始变适的信息.而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法

用途:

1)减少分析变量个数

2)通过对变量间相关关系探测,将原始变量进行分类

十二、时间序列分析

动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。

主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA横型、ARIMAX模型、向呈自回归横型、ARCH族模型